地理空间信息

2021, v.19;No.148(12) 40-44+72+5

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

基于多特征PolSAR数据的干旱区土地利用/覆被分类
Land Use/Cover Classification in Arid Area Based on Multi-feature PolSAR Data

卡地尔牙·忙苏尔;依力亚斯江·努尔麦麦提;张永福;梁田田;

摘要(Abstract):

以新疆于田绿洲为例,基于PolSAR与Landsat OLI的多源数据集,采用随机森林、决策树等机器学习算法进行了干旱区土地利用/覆被分类精度对比研究。结果表明:(1)全极化PALSAR-2数据与目标极化分解特征分量、光谱特征数据的融合使分类总精度从单幅PALSAR-2图像分类的71.11%提高到93.24%,Kappa系数从0.65提高到0.92。(2)针对PALSAR-2数据,贡献率最大的特征变量来自Pauli分解的3种特征分量K1、K2、K3和Krogager分解的KD、KH;其次,植被指数、水体指数、盐分指数以及光谱主成分分析第一波段等光谱特征数据对地物分类有一定的贡献。(3)随机森林对多源数据集的土地利用分类性能优于SVM与决策树分类,该算法在精确提取干旱区土地覆被信息上有较好的可行性。

关键词(KeyWords): PolSAR;机器学习;随机森林;多源遥感;土地利用分类

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金资助项目(42061065,41561089);; 国家自然科学基金联合基金资助项目(U1703237)

作者(Author): 卡地尔牙·忙苏尔;依力亚斯江·努尔麦麦提;张永福;梁田田;

Email:

DOI:

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享